
Robust Online Optimization of Reward-uncertain MDPs

Kevin Regan and Craig Boutilier
Department of Computer Science

University of Toronto
{kmregan, cebly}@cs.toronto.edu

Abstract

Imprecise-reward Markov decision processes (IR-
MDPs) are MDPs in which the reward function is
only partially specified (e.g., by some elicitation
process). Recent work using minimax regret to
solve IRMDPs has shown, despite their theoreti-
cal intractability, how the set of policies that are
nondominated w.r.t. reward uncertainty can be ex-
ploited to accelerate regret computation. However,
the number of nondominated policies is generally
so large as to undermine this leverage. In this pa-
per, we show how the quality of the approximation
can be improved online by pruning/adding non-
dominated policies during reward elicitation, while
maintaining computational tractability. Drawing
insights from the POMDP literature, we also de-
velop a new anytime algorithm for constructing the
set of nondominated policies with provable (any-
time) error bounds. These bounds can be exploited
to great effect in our online approximation scheme.

1 Introduction
The use of Markov decision processes (MDPs) to model de-
cision problems under uncertainty requires the specification
of a large number of model parameters to capture both sys-
tem dynamics and rewards. This specification remains a key
challenge: while dynamics can be learned from data, resid-
ual uncertainty in estimated parameters often remains; and
reward specification typically requires sophisticated human
judgement to assess relevant tradeoffs. For this reason, con-
siderable attention has been paid to finding robust solutions
to MDPs whose parameters are imprecisely specified (e.g.,
computing robust policies, in the maximin sense, given tran-
sition probability uncertainty [2; 9; 12]).

Recently, techniques for computing robust solutions for
imprecise reward MDPs (IRMDPs) have been proposed [7;
15; 19]. The specification of rewards can be especially prob-
lematic, since reward functions cannot generally be learned
from experience (except for the most simple objectives in-
volving observable metrics). Reward assessment requires the
translation of general user preferences, and tradeoffs with re-
spect to the relative desirability of states and actions, into

precise quantities—an extremely difficult task, as is well-
documented in the decision theory literature [8]. Further-
more, this time-consuming process may need to be repeated
for different users (with different preferences).

Fortunately, a fully specified reward function is often not
needed to make optimal (or near-optimal) decisions [15]. IR-
MDPs are defined as MDPs in which the reward function
lies in some set R (e.g., reflecting imprecise bounds on re-
ward parameters). In this paper, we address the problem
of fast, online computation of robust solutions for IRMDPs.
We use minimax regret as our robustness criterion [15; 16;
19]. While solving IRMDPs using this measure is NP-hard
[19], several techniques have been developed that allow the
solution of small IRMDPs. Of particular note are meth-
ods that exploit the set Γ of nondominated policies, i.e.,
those policies that are optimal for some element of R [16;
19]. Unfortunately, these methods scale directly with the
number of dominated policies; and Γ is often too large to
admit good computational performance. A subset Γ̃ of the
nondominated set can be used as an approximation, and, if
specific bounds on the approximation quality of that set are
known, error bounds on the minimax solution can be derived
[16]; but methods for producing a suitable approximate set
with the requisite bounds are lacking.

We develop an approach for approximating minimax re-
gret during elicitation by adjusting the subset Γ̃ online. It
allows us to make explicit tradeoffs between the quality of
the approximation and the efficiency of minimax regret com-
putation. In online elicitation of rewards, the feasible reward
set R shrinks as users respond to queries about their prefer-
ences. This means that some undominated policies in Γ̃ be-
come dominated and can be ignored, thus improving online
computational efficiency. This, in turn, permits further non-
dominated policies to be added to Γ̃, allowing for improve-
ment in decision quality. To support online elicitation and
computation, we also develop a new algorithm for construct-
ing the set Γ̃ in an anytime fashion that provides an upper
bound on minimax regret. This algorithm is based on insights
from Cheng’s [6] linear support method for POMDPs.

We first review relevant background on MDPs, IRMDPs
and minimax regret. We then discuss how nondominated
policies exploited online during reward elicitation, and de-
velop the nondominated/region vertex (NRV) algorithm for

generating nondominated policies for IRMDPs. We evalu-
ate our methods on random MDPs and a “real-world” MDP
for cognitive assistance.

2 Imprecise Reward MDPs

We assume an infinite horizon MDP 〈S,A, {Psa}, γ, β, r〉,
with finite state set S, finite action set A, transition
distributions Psa(·) over states (given action a taken in
state s), discount factor γ, initial state distribution β,
and reward function r : S × A → R. A policy π
maps states to actions, and its value is given by V π =∑
s1∈S β(s1)E

[∑∞
i=1 γ

i−1r(si, π(si)) | π
]

(where expecta-
tion is taken over the state sequence induced by π). We seek
an optimal policy π∗ s.t. V ∗ = V π

∗ ≥ V π,∀π.
A policy π induces occupancy frequencies fπ(s, a), giv-

ing the total discounted probability of being in state s and
taking action a. Given fπ , the policy can be recovered via
π(s, a) = fπ(s, a)/

∑
a′ f

π(s, a′). Because of this direct
correspondence, we treat occupancy frequencies and policies
interchangeably in what follows. For ease of exposition we
use the following vector notation: r is an |S||A| vector with
entries r(s, a); f is an |S||A| vector with entries f(s, a); and
P is an |S||A| × |S| transition matrix. Define matrix E to
be identical to P with 1 subtracted from each self-transition
probability Psa(s). The set of valid occupancy probabilities
for a fixed MDP is given by F ≡ {f | γE>f + β = 0}
[14]. We can express the optimal value function in terms of
occupancy frequencies: V ∗ = argmaxf∈F f · r.

Specification of reward functions often requires sophisti-
cated human judgements and tradeoffs to be made regard-
ing the precise value of specific states and actions. To
minimize the burden of reward elicitation, it is often desir-
able to elicit only partial reward information [15; 16]. We
can model this using an imprecise reward MDP (IRMDP)
〈S,A, {Psa}, γ, β,R〉, in which the reward function r is re-
placed by feasible reward setR. Intuitively, any reward func-
tion r ∈ Rmight represent the user’s preferences, withR de-
termined using some form of preference assessment or elici-
tation. We restrict attention in what follows to the case where
R is a bounded convex polytope defined by linear constraint
set {r | Ar ≤ b} and denote the number of constraints by
|R|. Such linear constraints arise naturally in reward assess-
ment: a priori bounds on plausible reward values from a do-
main expert; user responses to elicitation queries comparing
reward, policies or trajectories [16]; or policy observation (as
in inverse reinforcement learning [11]).

To compute robust policies w.r.t. R we use the minimax
regret criterion [5; 18], recently adopted for IRMDPs [16;
19]. Let f be an occupancy frequency (induced by some pol-
icy) and r a reward function. Define R(f , r) = maxg∈F g ·
r − f · r to be the regret of policy f w.r.t. r. Regret mea-
sures the difference in value between f and the optimal policy
given r. Define pairwise max regret to be PMR(f ,g,R) =
maxr∈R g · r − f · r; i.e., the maximum value difference
between g and f over all possible rewards. Define:

Figure 1: Illustration of value as a linear function of reward.

MR(f ,R) = max
r∈R

R(f , r) = max
g∈F

PMR(f ,g,R) (1)

MMR(R) = min
f∈F

MR(f ,R)

= min
f∈F

max
r∈R

max
g∈F

g · r− f · r (2)

MR(f ,R) is the max regret of a policy f with respect to the
feasible reward setR. This is simply the worst case loss over
all possible realizations of reward. MMR(R) is the mini-
max regret of a feasible reward setR, and the occupancy fre-
quency f that minimizes max regret (and the corresponding
policy) is the minimax optimal policy. This definition can be
interpreted as a game in which a decision maker chooses pol-
icy f to minimize loss relative to the optimal policy and an
adversary chooses the reward r to maximize this loss given
f . The minimax regret criterion compares favorably to the
maximin robustness measure also used in the robust MDP lit-
erature [9; 10; 12]. While maximin value is more computa-
tionally tractable, it leads to conservative policies since the
policy is being optimized against the worst case realization
of reward. Minimax regret offers a more intuitive measure
of performance by assessing the loss of a policy (relative to
the optimal policy) given an instantiation of reward, and is
empirically a much more effective driver of elicitation than
maximin [15].

Several recent approaches to computing minimax regret
rely on the concept of policies being nondominated w.r.t. re-
ward polytope R [16; 19]. Formally, we say f is nondomi-
nated w.r.t.R iff

∃ r ∈ R s.t. f · r ≥ f ′ · r ∀ f ′ ∈ F .

Let ΓR denote the set of all nondominated policies w.r.t. to
R; we omit the subscript whenR is clear from context.

We define V(r) = maxf∈F f · r to be the optimal value
obtainable when r ∈ R is the true reward. Since policy value
is linear in r, V is piecewise linear and convex (PWLC). Since
dominated policies f cannot contribute to this value, we can
define VΓ(r) = maxf∈Γ f · r, and immediately see that V =
VΓ. Fig. 1 illustrates this for a simplified 1-D reward, with
nondominated policy set Γ = {f1, f2, f3, f5} (f4 is dominated,
i.e., optimal for no point in reward space).

Given a subset Γ̃ ⊆ Γ of nondominated policies, the func-
tion VΓ̃ approximates the optimal value function. The V-

error of this approximation at point r is:

εV(Γ̃, r) = VΓ(r)− VΓ̃(r). (3)

Define the (global) V-error of the approximation as whole:

εV(Γ̃,R) = max
r∈R

εV(Γ̃, r) = max
r∈R

VΓ(r)− VΓ̃(r). (4)

In Fig. 1, an asterisk marks the point defining (global) V-error
of the approximate set Γ̃ = {f1, f3, f5}, which omits f2 from
the nondominated set Γ (the marked, dashed line indicates the
magnitude of this error).

While computing minimax regret for IRMDPs is NP-hard
[19], several techniques have been proposed for its computa-
tion [19; 15; 16]. For example, one can exploit the observa-
tion that the adversarial policy (or “witness”) g in Eq. 2 must
be nondominated [19; 16]; defining

MMR(Γ,R) = min
f∈F

max
r∈R

max
g∈Γ

g · r− f · r (5)

we immediately obtain that MMR(R) = MMR(Γ,R). In
[16] this observation is exploited in a simple constraint gen-
eration procedure for minimax regret and is shown to outper-
form other algorithms on small, random MDPs. The method
solves a series of linear programs (LPs):

minimize
f ,δ

δ

subj. to: δ ≥ ri · gi − ri · f ∀ 〈gi, ri〉 ∈ GEN

γE>f + β = 0

where GEN is a set of constraints corresponding to a subset
of possible adversarial choices of r (and the corresponding
optimal policies w.r.t. r). Were GEN to contain all vertices
of polytopeR, this LP would capture minimax regret exactly.
However, since most of these constraints will not be binding
at the optimal solution, constraint generation is used. Given
the solution f to a relaxed problem with subset GEN, we find
the most violated constraint, i.e., the 〈r,g〉-pair that maxi-
mizes the regret of f . If no violated constraint exists, then f
is the minimax optimal policy.

Since the adversarial policy must lie in the nondominated
set Γ, we can find the most violated constraint by solving a
small LP for each g ∈ Γ:

maximize
r

g · r− f · r subject to: Ar ≤ b

The g with the largest objective value determines the maxi-
mally violated constraint. This approach is very efficient if
the set of nondominated policies is small. However, this is
not often the case. A sufficiently small set Γ̃ ⊂ Γ can be
substituted to efficiently approximate minimax regret. If we
can bound the V-error εV(Γ̃,R), then the error in minimax
regret using this approximate set is bounded by εV(Γ̃,R);
i.e., MMR(Γ,R) −MMR(Γ̃,R)≤ εV(Γ̃,R) [16]. Further-
more, the true max regret of the approximately optimal pol-
icy f̃ induced by Γ̃ is bounded: MR(f̃ ,R) −MMR(Γ,R)≤
2εV(Γ̃,R). Existing approaches to generating nondominated
policies do not admit a bound on V-error [16]; to address this,
we develop an anytime algorithm in Sec. 4 that generates non-
dominated policies to directly minimize V-error (with suit-
able bounds).

Algorithm 1: Online Adjustment during Elicitation
Initialization:
mdp← the parameters of our MDP model
R0 ← initial reward polytope
Γ̃0 ← initial nondominated policies (computed offline)
τ ← acceptable level of regret
Elicitation:
foreach step t ≥ 1 do

mmr, f ,g, r← ComputeMMR(mdp,Rt−1, Γ̃t−1)
response← SelectAndAskQuery(f ,g, r,mdp)
Rt ← Refine(response,Rt−1)
Γ̃t ← Prune(Rt,Γ̃t−1) ∪ Add(Rt, Γ̃t−1)
if mmr < τ then

terminate and return minimax optimal policy f

3 Online Optimization
We now describe how one can best exploit an approximate set
Γ̃ of nondominated policies, adjusting this set online to com-
pute increasingly accurate approximations of minimax regret
during reward elicitation. During elicitation, the feasible re-
ward set R shrinks as more information is gleaned about the
actual reward (e.g., as users respond to queries or behavior is
observed). IfR′ ⊂ R is the refinement ofR given by this ad-
ditional information, then ΓR′ ⊆ ΓR, i.e., policies that were
nondominated w.r.t.Rmay become dominated when the fea-
sible reward set is reduced to R′. Since the computational
performance of constraint generation using Γ is tightly tied
to its size, pruning away newly dominated policies can offer
tremendous speed up in minimax regret computation.

Pruning of ΓR′—or its approximation Γ̃—can be realized
as follows: for each f ∈ Γ̃, we solve a small LP to find a
reward point at which f is nondominated:

maximize
r,δ

δ

subj. to: δ ≤ f · r− f ′ · r, ∀ f ′ ∈ Γ̃ \ f (6)

r ∈ R′

If the objective δ is negative, then f is dominated and can be
pruned from Γ̃. While pruning can speed up online compu-
tation, it can also be used to “create space” to add new non-
dominated policies to the approximate set Γ̃. Thus we can
improve the quality of the approximation by adding new poli-
cies to Γ̃, while maintaining the same online computational
overhead by keeping the size of Γ̃ roughly constant through
the effective use of pruning. Adding new policies is a simple
matter of running further iterations of a nondominated pol-
icy generation algorithm with suitable anytime behavior: we
develop just such an algorithm in the next section.1

These considerations lead to the following online opti-
mization algorithm. Offline (prior to elicitation), we com-
pute an initial approximate set Γ̃0 of nondominated policies
given the prior feasible reward set R0. The size of Γ̃0 is de-
termined by the demands of efficient online minimax regret

1The entire set Γ could also be computed offline, and policies
selectively added as elicitation proceeds.

Figure 2: Illustration of a nondominated region.

computation. At iteration t, minimax regret is computed for
Rt−1 using Γ̃t−1 (note that most elicitation schemes require
the minimax optimal solution to generate new queries or de-
cide when to terminate the elicitation process in any case [5;
15]). The new set Rt is formed (incorporating constraints
given by the query response), and the set Γ̃t is constructed
by: (a) pruning policies in Γ̃t−1 that are dominated relative
to Rt; and (b) adding new nondominated policies to Γ̃t−1 to
improve approximation quality. Alg. 1 outlines how pruning
and addition can be integrated into an elicitation algorithm.

Many variants of this scheme exist. The pruning and ad-
dition of policies need not be done in real time, but can take
place in some parallel background process. Minimax regret
w.r.t.Rt can be computed using a “lagging” set Γ̃t−k without
detriment: error would be determined by the error of the lag-
ging approximate set. And update of Γ̃ can take place asyn-
chronously: whenever a set of update operations has been
“completed” relative to anyRt−k, it can be used at stage t.

4 Nondominated Region Vertex Algorithm
The ability to add the most “relevant” new policies to the ap-
proximate set Γ̃ in our online procedure allows error in mini-
max regret to be reduced significantly while maintaining good
online computational performance. We now describe a prin-
cipled anytime algorithm for generating an approximate set
Γ̃ which directly minimizes value function error. Our algo-
rithm is an adaptation of Cheng’s [6] classic linear support
method for POMDPs: rather than computing nondominated
α-vectors over belief states, we compute policies that are non-
dominated w.r.t. uncertain reward. We note that unlike the
heuristic technique for generating approximation sets Γ̃ pro-
posed in [16], our algorithm comes with theoretical bounds
on error, without which we could not offer the user a guaran-
tee on maximum regret during elicitation.

Given an approximate set Γ̃, let RΓ̃(f) be the nondomi-
nated region of policy f w.r.t. Γ̃:

RΓ̃(f) ≡ {r ∈ R | f · r ≥ f ′ · r,∀ f ′ ∈ Γ̃},

i.e., that region ofR for which f is the best policy in Γ̃. Fig. 2
illustrates the nondominated region RΓ̃(f3) of policy f3 with
respect to the approximate set Γ̃ = {f1, f5} (depicted in bold).
The nondominated regionRΓ̃(f) for any f ∈ Γ̃ is a bounded,
convex polytope. Furthermore, the error function εV(Γ̃, r) is

convex over any such region (since error is defined as the dif-
ference between V, which is PWLC, and VΓ̃, which is linear
overRΓ̃(f)). Hence the maximum of εV(Γ̃, r) over the region
RΓ̃(f) must lie at a vertex of RΓ̃(f). For example, in Fig. 2
the maximum over RΓ̃(f3) is found at the vertex labelled r′.
As a consequence, the maximum error must lie at the vertex
of the nondominated region of some f ∈ Γ̃:

Lemma 1. The reward that maximizes εV(Γ̃,R) is found at
the vertex of the nondominated regionRΓ(f) for some f ∈ Γ̃.

Algorithm 2: Nondominated Region Vertex algorithm
Let δ be allowable error, and r0 some vertex ofR
Γ̃← ∅ subset of nondominated policies
E ← {r0} vertices of the nondominated regions
εV(r0)←∞ (arbitrary) initial error
E′ ← ∅ vertices with error below threshold δ
while E − E′ 6= ∅ do

r′ ← argmaxr∈E−E′ εV(r)1
fr′ ← argmaxf∈F f · r′2

Γ̃← Γ̃ ∪ {fr′}
E ← E ∪ Vertices(RΓ̃(fr′))
E′ ← E′ ∪ {r′}
foreach r ∈ E − E′ do

εV(r)← V(r)− VΓ̃(r)3
if εV(r) ≤ δ then

E′ ← E′ ∪ {r}

The nondominated region/vertex (NRV) algorithm exploits
this fact by computing error only at vertices of such regions,
and adding (optimal) policies to Γ̃ only for those vertices with
maximal error. The algorithm (Alg. 2) begins with an initial
nondominated policy f (optimal for some arbitrary r ∈ R) in
Γ̃. It adds a policy by: (a) computing EΓ̃, the set of vertices
of the nondominated regions of Γ̃; (b) computing the opti-
mal policy fr for each r ∈ EΓ̃; and (c) selecting the policy
that offers the greatest improvement, i.e., such that the error
rfr − maxg∈Γ̃ rg is maximal. The selected policy is added
to Γ̃ and the process repeated until the maximum error at any
vertex falls below an acceptable threshold (or some other ter-
mination criterion is met). We can show:

Theorem 1. The NRV algorithm with error threshold δ out-
puts a set Γ̃ satisfying εV(Γ̃,R) ≤ δ.

As in [6], many efficiencies are exploited that enhance the
high-level description in Alg. 2. For example, caching is used
to eliminate duplication in computing max error (see line 1),
finding the optimal policy (line 2) and computing error at
each new vertex (line 3).2 Secondary information generated
by NRV can also be leveraged. By storing the vertex r at
which each policy f ∈ Γ̃ was found to be optimal, we can

2Further implementation details can be found in forthcoming
technical report. We use the LRS backward search algorithm for
vertex enumeration [1] and CPLEX 11.1.1 to solve LPs.

Figure 3: Time (mins.) to generate nondominated policies
(20 instances) for both NRV and πWitness: |R|=6.

quickly determine whether f remains nondominated by test-
ing whether r remains feasible. If r ∈ R′ (i.e., satisfies the
new constraints that refineR), then f remains nondominated.
If r /∈ R′, then we resort to LP (6).

Related Work A connection exists between our approach
to identifying nondominated policies and work on solving
a restricted class of decentralized MDPs (DEC-MDPs) that
feature transition and observation independence [3]. In this
setting agents can be viewed as having nearly independent
“local MDPs” that are coupled only by a joint reward func-
tion. The goal in this work is to cooperatively maximize
cumulative reward. Several recent approaches for solv-
ing such DEC-MDPs involve identifying the set of policies
for each agent that are nondominated with respect to the
space of potential policies chosen by the other agents [3;
13]. With some adaptation, our NRV algorithm could be used
to solve transition independent DEC-MDPs. Likewise the
successive approximation algorithm for DEC-MDPs [13]—
which iteratively finds policies that are nondominated with
respect to another agent’s policies and admits an anytime er-
ror bound—could potentially be adapted to generating poli-
cies that are nondominated with respect to reward.

5 Empirical Evaluation
We test the NRV algorithm on small MDPs and compare it to
πWitness, an existing method for generating nondominated
policies [16]. We test both methods on small, randomly gen-
erated IRMDPs with factored, additive reward functions. A
state s = 〈x1, x2, . . . , x7〉 is composed of 7 binary variables,
yielding |S| = 128. We use two different reward functions:
the first r(s) = r1(x1) + r2(x2) + r3(x3) with dimension 6;
and the second r(s) = r1(x1)+r2(x2)+r3(x3)+r4(x4) with
dimension 8. For each MDP we generate a transition model
where each (s, a)-pair has log2 |S| random, nonzero transi-
tion probabilities. The imprecise reward polytope R is gen-
erated as follows: 1) for each (s, a) we select an underlying
“true” reward r(s, a) uniformly from a predefined range; 2)
we generate the uncertain interval of random size (normally
distributed); and 3) we randomly (uniformly) place the inter-

Figure 4: Time (mins.) to generate nondominated policies
(20 instances) for both NRV and πWitness: |R|=8.

val “around” the true reward r(s, a). We generate 20 MDPs
for each reward dimension, and run each algorithm to com-
pletion, generating all nondominated policies.

Figs. 3 and 4 show the average runtime of each algorithm.
While NRV is more efficient than πWitness on small MDPs,
the performance gap narrows as reward dimensionality in-
creases. The most striking advantage of NRV is the avail-
ability of an error bound εV(Γ̃,R) at each iteration. Fig. 5(a)
shows that the error εV drops quickly with each added non-
dominated policy (note the log scale). For example, εV(Γ̃,R)
is reduced to well under 1.0% of its initial value (i.e., when
Γ̃ = ∅) after only 500 policies, and to nearly 0.1% after 2000
policies. A small set Γ̃ of nondominated policies can be used
to quickly approximate minimax regret as discussed above.
We note that Γ̃ can usually be computed only once (offline),
prior to elicitation. Minimax regret, conversely, needs to be
computed repeatedly and online, since it is integral to many
elicitation schemes. Thus offline computation of a small Γ̃
with small error can greatly enhance online performance. For
this reason, the extensive offline computation required for
computing nondominated sets is not necessarily problematic.
However, we can do even more with NRV when allowing ap-
proximation in an online setting.

We now examine how NRV, used in conjunction with con-
straint generation for fast, approximate solution of mini-
max regret, works in the context of our online optimization
scheme. Recall our online model provides the ability to im-
prove the quality of an approximate solution during elicita-
tion, while maintaining tractability. We demonstrate this po-
tential in a specific elicitation setting.

Reward elicitation can proceed using a variety of queries.
In our tests, we use bound queries of the form “Is r(s, a) ≥
b?” for simplicity.3 The choice of query—i.e., which (s, a)-
pair to ask about and the parameter b—is dictated by the cur-
rent solution (CS) heuristic [5; 15]. Let the gap for any (s, a)-
pair be

∆(s, a) = max
r∈R

r(s, a)−min
r∈R

r(s, a).

3More complex queries and methods for MDP reward elicitation
are addressed in [17].

CS queries the point (s, a) with the largest weighted gap
f(s, a)∆(s, a), with weight given by occupancy frequency
f(s, a) in the current solution f to the minimax regret prob-
lem. The bound b is selected to be the midpoint of the gap
∆(s, a). A (yes or no) response to the bound query imposes
a linear constraint onR.

Each step of elicitation involves the following: 1) Mini-
max regret is computed w.r.t. the current reward polytope R;
2) the minimax regret solution is used to select a query us-
ing the CS heuristic; 3) the query response is used to refine
R. Elicitation terminates once max regret τ reaches an ac-
ceptable level. When a nondominated set Γ̃ is used to ap-
proximate the minimax optimal policy, we simply require that
MMR(Γ̃,R) + εV(Γ̃,R) ≤ τ (w.r.t. the current reward poly-
tope R). Online optimization improves solution quality and
decreases εV, thus admitting faster termination of elicitation.

We examine our online method in a realistic elicitation sce-
nario using a variant of the COACH MDP, which models a
system that provides cognitive assistance for persons with de-
mentia to enable them to complete activities of daily living
[4]. Very roughly, the goal is to guide a person through a
common task (e.g., hand-washing) by providing verbal or vi-
sual cues, while allowing the individual to maintain as much
independence as possible. We assume a general task of `
steps. The system can issue prompts at increasing levels of
intrusiveness, or can call a caregiver (e.g., therapist or family
member) to assist the person in task completion. This re-
sults in action space A = {0, 1, . . . , k} where 0 indicates no
prompt was issued, level k − 1 indicates the strongest, most
intrusive prompt and level k indicates that the caregiver was
called. The state is defined by three variables S = 〈T,D, F 〉
where T = {0, 1, . . . , `} is the number of tasks steps suc-
cessfully completed by the person, D = {0, 1, 2, 3, 4, 5+}
is the delay (time taken during the the current step); and
F = {0, 1, . . . , k} tracks whether a prompt at a specific
level was attempted at the current step and failed to imme-
diately get the person to the next step. The dynamics ex-
press the following intuitions. The no-prompt action will
cause a “progress” transition to the next step (setting delay
and failed-prompt to zero), or a “stall” transition (same step
with delay increased by one). The probability of reaching
the next step with action a = n is higher than a = n − 1
since more intrusive prompts have a better chance of facil-
itating progress; however, progress probability decreases as
delay increases. Reaching the next step after prompting is
less likely if a prompt has already failed at the current step.

The reward function is r(〈t, d, f〉, a) = rgoal(t) +
rprogress(d = 0) + rdelay(d) + rprompt(a), where: rgoal(t) is
a large positive reward when t = ` for completing the task
and is zero when t < `; rprogress(d = 0) is a (small) pos-
itive reward for progressing to step t (indicated by d being
reset to zero); rdelay(d) is a small negative reward for delay
in completing a step; and rprompt(a) is the negative cost as-
sociated with prompting the person. The precise values of
the rewards are not known but must be elicited from a care-
giver. We set ` = 14, k = 6 and create an IRMDP by setting
initial reward bounds to construct R in a manner similar to
the random IRMDPs discussed in the previous section. The

Figure 5: Error εV as function of NRV policies generated (20
random IRMDPs, log scale).

resulting IRMDP has size |S||A|=3012 and reward dimen-
sionality |R|=12. We use the NRV algorithm generate Γ̃ with
the following criterion in mind. We wish to allow for interac-
tive response times during elicitation, so we choose the size
of Γ̃ so that MMR(Γ̃,R) takes no more than one second to
compute. This results in Γ̃ containing less than 5% of all non-
dominated policies. We further assume that during elicitation
there are ten seconds available while waiting for a user re-
sponse to perform online optimization (pruning and addition)
of Γ̃. During elicitation we compute minimax regret using: a
static set Γ̃ with error εV; and a dynamic set Γ̃′ with decreas-
ing error ε′V, optimized online by pruning and adding policies
during the ten-second period provided by response latency.

Fig. 6 shows the upper bounds MMR(Γ̃,R) + εV(Γ̃,R)

and MMR(Γ̃′,R)+εV(Γ̃′,R) on max regret produced by the
static set and online-optimized set, respectively; it is shown as
the percentage of the initial upper bound on minimax regret
prior to the start of elicitation. We see that online optimiza-
tion of the nondominated set provides a tremendous benefit
in terms of elicitation. First, without online adjustment of Γ̃,
it is impossible to find the optimal policy: indeed, the static
set stalls after roughly 40 queries with minimax regret that
is still roughly 18% of the initial regret level. Online on-
line optimization of Γ̃ allows discovery of the optimal policy
with approximately 60 queries (this is about 5 simple bound
queries per reward parameter). Just as importantly, if an ap-
proximately optimal policy is desired, the online-optimized Γ̃
reduces minimax regret to 20% of its initial levels with only
about 12 queries on average, while the static approach re-
quires almost 35 queries. In this example, a small Γ̃ with less
than 5% of all nondominated policies enables effective re-
ward elicitation, quickly reducing the approximation error to
zero if Γ̃ is optimized online. This demonstrates the power of
our online approach. A very small set of nondominated poli-
cies is needed for fast online computation; but a static set of
the required size does not admit an approximation of suitable
quality. Pruning newly dominated policies during elicitation
and adding new policies using NRV allows one to maintain
online feasibility while reducing provable max regret to zero,
while supporting effective elicitation (both in terms of num-

Figure 6: Upper Bound on Minimax Regret (as proportion of
initial regret) during Elicitation for the COACH model.

ber of queries and interactive response time).

6 Discussion and Conclusion
We have presented a method for computing approximate, ro-
bust solutions to imprecise-reward MDPs (IRMDPs) in the
context of online reward elicitation. The NRV algorithm gen-
erates approximate sets of nondominated policies with prov-
able error bounds, which can be leveraged to efficiently ap-
proximate minimax regret using existing constraint genera-
tion methods. We also showed how online optimization of
the nondominated set, as reward knowledge is refined, allows
regret to quickly decrease to zero with only a small fraction of
all nondominated policies. Our empirical results demonstrate
the value of our online approach. Taken together these results
remove a significant computational barrier to online reward
elicitation for MDPs.

Future research includes developing more general queries,
suited to the sequential nature of MDPs, while remaining in-
tuitive and cognitively tractable to users; for example, the use
of additive reward models to support elicitation has recently
been explored [17]. Other possibilities include policy or tra-
jectory comparisons, which ask a user to assess their relative
preference for two state-action sequences (or distributions
over these). Since trajectories often contain extraneous in-
formation that is irrelevant to reward, trajectory “summaries”
which count reward-bearing events could be used. Other po-
tential queries remain to be explored, providing a richer vo-
cabulary for eliciting MDP reward functions, and easing their
adoption by practitioners.

Acknowledgements: Thanks to the reviewers for their help-
ful suggestions. This research was supported by NSERC.

References
[1] David Avis. lrs: A revised implementation of the re-

verse search vertex enumeration algorithm. In Polytopes–
Combinatorics and Computation, pages 177–198. Birkhauser-
Verlag, 2000.

[2] Andrew Bagnell, Andrew Ng, and Jeff Schneider. Solving un-
certain Markov decision problems. Technical Report CMU-
RI-TR-01-25, Carnegie Mellon University, Pittsburgh, 2003.

[3] Ralphen Becker, Shlomo Zilberstein, Victor R. Lesser, and
Claudia V. Goldman. Solving transition independent decen-
tralized Markov decision processes. Journal of Artificial Intel-
ligence Research, 22:423–455, 2004.

[4] Jennifer Boger, Pascal Poupart, Jesse Hoey, Craig Boutilier,
Geoff Fernie, and Alex Mihailidis. A planning system based
on Markov decision processes to guide people with dementia
through activities of daily living. IEEE Transactions on Infor-
mation Technology in Biomedicine, 10(2):323–333, 2006.

[5] Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schu-
urmans. Constraint-based optimization and utility elicitation
using the minimax decision criterion. Artifical Intelligence,
170(8–9):686–713, 2006.

[6] Hsien-Te Cheng. Algorithms for Partially Observable Markov
Decision Processes. PhD thesis, University of British
Columbia, Vancouver, 1988.

[7] Erick Delage and Shie Mannor. Percentile optimization in un-
certain Markov decision processes with application to efficient
exploration. In Proceedings of the Twenty-fourth International
Conference on Machine Learning (ICML-07), pages 225–232,
Corvallis, OR, 2007.

[8] Simon French. Decision Theory. Halsted, New York, 1986.
[9] G. Iyengar. Robust dynamic programming. Mathematics of

Operations Research, 30(2):1–21, 2005.
[10] Brendan McMahan, Geoffrey Gordon, and Avrim Blum. Plan-

ning in the presence of cost functions controlled by an adver-
sary. In Proceedings of the Twentieth International Conference
on Machine Learning (ICML-03), pages 536–543, Washing-
ton, DC, 2003.

[11] Andrew Ng and Stuart Russell. Algorithms for inverse rein-
forcement learning. In Proceedings of the Seventeenth Inter-
national Conference on Machine Learning (ICML-00), pages
663–670, Stanford, CA, 2000.

[12] Arnab Nilim and Laurent El Ghaoui. Robust control of Markov
decision processes with uncertain transition matrices. Opera-
tions Research, 53(1):780–798, 2005.

[13] Marek Petrik and Shlomo Zilberstein. A bilinear programming
approach for multiagent planning. Journal of Artificial Intelli-
gence Research, 35(1):235–274, 2009.

[14] Martin L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley, New York, 1994.

[15] Kevin Regan and Craig Boutilier. Regret-based reward elici-
tation for Markov decision processes. In Proceedings of the
Twenty-fifth Conference on Uncertainty in Artificial Intelli-
gence (UAI-09), pages 454–451, Montreal, 2009.

[16] Kevin Regan and Craig Boutilier. Robust policy computation
in reward-uncertain MDPs using nondominated policies. In
Proceedings of the Twenty-fourth AAAI Conference on Artifi-
cial Intelligence (AAAI-10), pages 1127–1133, Atlanta, 2010.

[17] Kevin Regan and Craig Boutilier. Eliciting additive reward
functions for Markov decision processes. In Proceedings of
the Twenty-second International Joint Conference on Artificial
Intelligence (IJCAI-11), Barcelona, 2009. To appear.

[18] Leonard J. Savage. The Foundations of Statistics. Wiley, New
York, 1954.

[19] Huan Xu and Shie Mannor. Parametric regret in uncertain
Markov decision processes. In 48th IEEE Conference on De-
cision and Control, pages 3606–3613, Shanghai, 2009.

